Detection of myeloma in skeleton of mice by whole-body optical fluorescence imaging.
نویسندگان
چکیده
Development of new therapies for myeloma has been hindered by the lack of suitable preclinical animal models of the disease in which widespread tumor foci in the skeleton can be detected reliably. Traditional means of detecting skeletal tumor infiltration such as histopathology are cumbersome and labor-intensive and do not allow temporal monitoring of tumor progression or regression in response to therapy. To resolve this problem, we modified the Radl 5TGM1 model of myeloma bone disease such that fluorescent myeloma tumors can be optically imaged in situ. Here, we show that murine myeloma 5TGM1 tumor cells, engineered to express enhanced green fluorescent protein (eGFP; 5TGM1-eGFP cells), can be imaged in a temporal fashion using a fluorescence illuminator and a charge-coupled device camera in skeletons of live C57BL/KaLwRij mice. High-resolution, whole-body images of tumor-bearing mice revealed that myeloma cells homed almost exclusively to the skeleton, with multiple focal tumor foci in the axial skeleton, consistent with myeloma tumor distribution in humans. Finally, the tested antitumor treatment effect of Velcade (bortezomib), a proteasome inhibitor used clinically in myeloma, was readily detected by GFP imaging, suggesting the power of the technique in combination with the Radl 5TGM1-eGFP model for rapid preclinical assessment and sensitive monitoring of novel and potential therapeutics. Whole-body GFP imaging is practical, convenient, inexpensive, and rapid, and these advantages should enable a high throughput when evaluating in vivo efficacy of new potential antimyeloma therapeutics and assessing response to treatment.
منابع مشابه
Fluorescence imaging of multiple myeloma cells in a clinically relevant SCID/NOD in vivo model: biologic and clinical implications.
The in vivo preclinical testing of investigational therapies for multiple myeloma (MM) is hampered by the fact that models generated to recapitulate the development of diffuse skeletal lesions after i.v. injections of tumor cells do not allow for ready detection of the exact site(s) of lesions or for comprehensive monitoring of their progression. We therefore developed an in vivo MM model in se...
متن کاملWhole-body low-dose computed tomography and advanced imaging techniques for multiple myeloma bone disease.
Detection of lytic bone lesions is crucial in the workup for multiple myeloma and very often dictates the decision to start treatment. Conventional radiography, despite decades of use, is often insufficient for detection of bone disease in multiple myeloma. Modern imaging techniques such as MRI, PET, and CT offer superior detection of myeloma bone disease and extramedullary manifestations of pl...
متن کاملWhole-body optical imaging of green fluorescent protein-expressing tumors and metastases.
We have imaged, in real time, fluorescent tumors growing and metastasizing in live mice. The whole-body optical imaging system is external and noninvasive. It affords unprecedented continuous visual monitoring of malignant growth and spread within intact animals. We have established new human and rodent tumors that stably express very high levels of the Aequorea victoria green fluorescent prote...
متن کاملComparison of 99mTc-MDP and 99mTc-MIBI whole body scans for diagnosis of widespread skeletal metastases [Persian]
Skeletal metastasis is one of the most important disabling complications of the malignant diseases. As in general, the survival of patients with osteometastatic lesions is relatively long, an early diagnosis can lead to improve the patient’s life, both quantitatively and qualitatively, and prevent exacerbation of the disease and disabling complications. In this study, 22 patients with est...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2007